Synthesis and Characterization of Derivatives of a Chelating Aluminum Dichloride Complex Containing a 3,5-Di-*tert*-butylpyrazolato Unit

Wenjun Zheng, [a] Herbert W. Roesky, *[a] Nadia C. Mösch-Zanetti, [a] Hans-Georg Schmidt, [a] and Mathias Noltemeyer [a]

Dedicated to Professor Richard L. Wells

Keywords: Aluminum / N ligands / Pyrazolato ligands / Structural elucidation

The chelating aluminum complex $[\{3,5\text{-N-}tBu_2pz\text{-N'-CH=} C(\text{SiMe}_3)\}AlR_1R_2]$ $[R^1=R^2=Me\ (2); R^1=R^2=H\ (3); R^1=R^2=I\ (4)]$ was prepared in modest yield from an organoaluminum dichloride precursor $[\{3,5\text{-N-}tBu_2pz\text{-N'-CH=}C(\text{SiMe}_3)\}AlCl_2]$ (1). Compounds 2 and 3 were obtained from the reaction of 1 with MeLi in Et₂O or with LiAlH₄ in THF, respectively. Reaction of 2 or 3 with I₂ in toluene gave 4. In addition, the reaction of 1 with two equivalents of water yielded the hy-

drolyzed product H[3,5-N- tBu_2pz -N'-CH=C(SiMe₃)] (5). All compounds were characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. The X-ray structure analysis shows that complex **2** exhibits one fused five-membered AlC₂N₂ ring and one pyrazolato ring system.

(© Wiley-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002)

Introduction

Organoaluminum compounds have been explored widely owing to their importance in a variety of applications.[1] The chemistry of sterically hindered neutral derivatives of organoaluminum halides, hydrides and alkyls is especially important as they are key starting materials for a variety of compounds with unusual bonding and oxidation states, as well as unique structures.[2] Recent progress in aluminum chemistry has shown that aluminum halides with a bulky ligand may be used as precursors for synthesizing low-valent Al^I species.^[3] Additionally, the reaction of aluminum alkyls with extremely strong Lewis acids such as $B(C_6F_5)_3$ leads to the formation of low-coordinate cationic compounds that are potential catalysts for olefin polymerization.^[4] Furthermore, organoaluminum hydrides have been shown to be ideal starting materials for preparing various unusual compounds that were difficult to synthesize by other routes. [5,6] Obviously, the sterically demanding ligands play a crucial role during the formation of these compounds. In the course of the reaction of aluminum pyrazolato compounds and trimethylsilylacetylene, an unusual compound $[{3,5-N-tBu_2pz-N'-CH=C(SiMe_3)}AlCl_2]$ (1) was formed. It has been shown that the Al-Cl bonds in 1 are readily cleaved and can be substituted by other functional groups.^[7] Apparently, the chelating [3,5-N-tBu₂pzN'-CH=C(SiMe₃)] ligand in compound 1 is more sterically demanding than the simple 3,5-di-*tert*-butylpyrazole. Due to the interest in precursors of sterically demanding aluminum halides, alkyls and hydrides, reactions using 1 as a starting material have been examined.

Results and Discussion

A solution of 1 and two equivalents of MeLi in Et₂O was stirred at -78 °C for 3 h and then at ambient temperature for 15 h to give $[{3,5-N-tBu_2pz-N'-CH=C(SiMe_3)}]AlMe_2$ (2) in fair yield (ca. 70%; Scheme 1).^[8] Compound 2 is extremely soluble in n-hexane and it can be purified in two steps. First, the resulting residue was sublimed at 0.01 mbar and 100 °C and then recrystallized from n-hexane at -26°C to afford colorless crystals. The mass spectrum (EI) shows 2 to be monomeric $\{m/z\ (\%) = 334\ (10)\ [M^+],\ 319$ (100) $[M^+ - Me]$. The ¹H NMR spectrum shows a set of resonances for the chelating moiety $\{\delta = 0.37 [Si(CH_3)_3],$ 1.00 $[C(3)-C(CH_3)_3]$, 1.28 $[C(1)-C(CH_3)_3]$, 5.86 [C(2)H], 7.63 [=C(4)H] and one signal for the protons of the Al-Me groups at $\delta = -0.15$, clearly indicating the formation of 2. However, the ²⁷Al NMR resonance is too broad to be distinguished.

The crystallographic data of **2** are listed in Table 1. It crystallizes in the monoclinic crystal system, space group C2/c (Figure 1). The similar cell parameters of [{3,5-N- $tBu_2pz-N'-CH=C(SiMe_3)}AlMe_2]$ (**2**) and [{3,5-N- $tBu_2pz-N'-CH=C(SiMe_3)}AlCl_2]$ (**1**) indicate a structural relationship between these two compounds.^[7] As in

[[]a] Institut für Anorganische Chemie der Universität Göttingen Tammannstraße 4, 37077 Göttingen, Germany Fax: (internat.) +49-(0)551/39-3373 E-mail: hroesky@gwdg.de

Scheme 1. Synthesis of compounds 2-5

compound 1, the geometry at the aluminum atom is a distorted tetrahedron [N1-Al1-C5 = 84.90(9)° and C21-Al1-C22 = 115.24(11)°] due to the strain imposed by the chelate ring. The fused five-membered AlC₂N₂ ring and the pyrazolato moiety are approximately coplanar. The C=C bond length of the inserted trimethylsilylacetylene molecule is significantly increased [C4-C5 = 1.328(3) Å] but is slightly shorter than the C=C double bonds of the σ complex of AlCl₃ with tetramethylcyclobutadiene [1.387(3) Å]^[9] and 1,4-dichloro-2,3,5,6-tetramethyl-1,4-dialumina-2,5-cyclohexadiene [1.367(3) Å].^[10] The terminal Al(1)-C bond lengths [1.971(2) Å] are similar to those in [(η^1 , η^1 -3,5- tBu_2 pz)(μ -AlMe₂)]₂ [Al-C = 1.962(2) Å].^[11]

Treatment of 1 with 2.1 equivalents of LiAlH₄ in THF at -30 °C yielded $[\{3,5-N-tBu_2pz-N'-CH=C(SiMe_3)\}-$ AlH₂]·(THF)₂ [3·(THF)₂] as a white solid (Scheme 1) that is only slightly soluble in common organic solvents, except THF. Compound $3\cdot(THF)_2$ is sensitive to oxygen and water. The mass spectrum (EI) suggests that 3·(THF)₂ is a monomer $\{m/z\ (\%) = 306\ (100)\ [M^+]\}$, probably because of the sterically demanding chelating ligand [3,5-N-tBu₂pz- $N'-CH=C(SiMe_3)$]⁻. The THF molecules of 3·(THF)₂ can be removed by heating at 50 °C under high vacuum for 15 hours to give 3 { δ = 0.14, 1.410, 1.415, 3.80 (br.), 6.21 and 7.60 in [D₈]THF}. The ¹H NMR spectrum ([D₈]THF) reveals a set of resonances for the chelating moiety and a broad Al-H signal (δ = 3.80, $W_{1/2}$ = 85 Hz). The ²⁷Al NMR spectrum shows one signal at $\delta = 106.4$, implying a coordination number of four at the Al atom. The two resonances of the protons of the nonequivalent tBu groups are close to each other ($\delta = 1.410$ and 1.415). The IR spec-

Table 1. Crystallographic data for 2

	2
Empirical formula	$C_{18}H_{35}AlN_2Si$
Molecular weight	334.55
Temperature (K)	200(2)
Wavelength	0.71073 Å
Crystal system	monoclinic
Space group	C2/c
Unit cell dimensions	a = 29.890(24) Å
	$b = 9.478(10) \text{ Å}_{0}$
	c = 18.256(20) Å
	$\alpha = 90^{\circ}$
	$\beta = 122.44(3)^{\circ}$
	$\gamma = 90^{\circ}$
Volume	4364.7(75) Å ³
Z	8
Density (calculated)	1.018 Mg/m^3
Absorption coefficient	$0.148 \; \text{mm}^{-1}$
F(000)	1472
Crystal size	$1.0 \times 1.0 \times 0.2 \text{ mm}^3$
θ range for data collection	3.77 to 25.02 °
Index ranges	$-35 \le h \le 35$
	$-11 \le k \le 11$
	$-21 \le l \le 21$
Reflections collected	7698
Independent reflections	3849 [R(int) = 0.0251]
Refinement method	full-matrix least-squares on F^2
Data/restraints/parameters	3845/0/210
Goodness-of-fit on F^2	1.032
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0457, wR_2 = 0.1241$
R indices (all data)	$R_1 = 0.0515, wR_2 = 0.1327$
Largest different peak and	0.532 and -0.376
hole $[e \cdot A^{-3}]$	

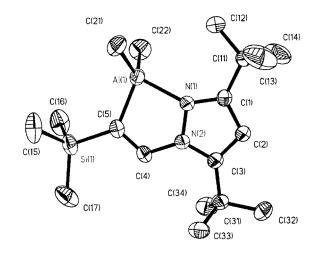


Figure 1. Perspective view of compound **2**, showing the numbering scheme and the thermal ellipsoids at the 50% probability level: Al(1)-C(5) 1.993(3), Al(1)-C(21) 1.971(2), Al(1)-C(22) 1.971(3), Al(1)-N(1) 2.016(3), C(4)-C(5) 1.328(3) Å; C(5)-Al(1)-N(1) 84.90(9)°, C(21)-Al(1)-C(22) 115.24(11)°

trum exhibits two strong bands in the expected range for Al-H stretching bands (1780 and 1812 cm⁻¹) implying terminal Al-H bonds in the solid state. However, whether the THF molecules in 3·(THF)₂ coordinate directly to the aluminum center or are incorporated in the crystal lattice is currently unknown.

The reaction of 2 with two equivalents of I2 in toluene the compound $[{3,5-N-tBu_2pz-N'-CH} =$ C(SiMe₃)}AlI₂] (4) after refluxing for 24 h (Scheme 1).^[13] Compound 4 is readily soluble in toluene but only slightly soluble in *n*-hexane and can be readily purified by crystallization from toluene at -26 °C to give small pale crystals. The mass spectrum is in good agreement with the formulation of 4 as a monomer $\{m/z\ (\%) = 558\ (4)\ [M^+],\ 553\ (15)$ [M $^+$ - Me], 431 (100) [M $^+$ - I]}. The 1 H NMR spectrum shows one set of resonances for the chelating moiety [3,5- $N-tBu_2pz-N'-CH=C(SiMe_3)]^-$ ($\delta = 0.42, 082, 1.43, 5.81$ and 7.36 in C₆D₆), indicating the formation of 4. Alternatively, 4 can also be prepared by the reaction of 3 and two equivalents of I₂ under mild conditions (room temp.). The reaction of 3 with I₂ gives higher yields than that with 2.^[14] It is essential that the THF molecules in the precursor 3·(THF)₂ are removed prior to the reaction of 3 with I₂ as otherwise the product is difficult to separate from the oily residue.

The reaction of $[{3,5-N-tBu_2pz-N'-CH=C(SiMe_3)}-$ AlCl₂] (1) with two equivalents of water in THF led to the formation of the free ligand [3,5-N-tBu₂pz-N'-CH= CH(SiMe₃)] (5) (Scheme 1), which could be purified by sublimation at 90 °C under high vacuum (0.01 mbar). Compound 5 is soluble in both aliphatic and aromatic solvents at ambient temperature. The mass spectrum (EI) {m/z $(\%) = 278 (20) [M^+], 263 (100) [M^+ - Me]$ and elemental analysis are in accordance with a monomeric formula for 5. The ¹H NMR spectrum in C₆D₆ shows two doublets at $\delta = 6.77$ and 7.48 ($^2J = 16.3$ Hz) for the two hydrogen atoms of the inserted TMS(H_a)C=(H_b) group. No proton resonance was observed in the range $\delta = 10-12$ [the resonance of an $N_{(pyrazole)}$ -H proton is usually found between $\delta = 10$ and 12 in C_6D_6 , [15] confirming that the added H_a atom is found in a terminal position at the TMS(H_a)C= group. Unfortunately, no lithium salt of 5 could be isolated from our attempts to deprotonate 5 with tBuLi at -78 °C or at ambient temperature. The reason why compound 5 is resistant to deprotonation is as yet unclear.

Conclusion

In summary, this paper reports the preparation of three aluminum complexes **2–4**, with an unusual chelating ligand containing a bulky 3,5-di-*tert*-butylpyrazolato unit, and the formation of ligand **5**, all from the readily accessible aluminum dichloride complex **1**. We have also shown that the Al–Cl bonds of **1** can be easily substituted partly^[7] or completely by various basic substituents under different conditions, while the metallaheterocycle in these compounds seems to be rather stable. We are interested in a variety of aluminum complexes that have unique binding modes due to their potential applications as catalysts.^[2] Compounds **1–4** are therefore ideal starting materials for further studies.

Experimental Section

General: All reactions were performed using standard Schlenk and dry box techniques. Solvents were appropriately dried and distilled under dinitrogen prior to use. All NMR spectra were obtained in 5-mm tubes with dry degassed [D₆]benzene as solvent (except for 3, which was measured in [D₈]THF), referenced to external SiMe₄. Elemental analyses were performed by the Analytisch-Chemisches Laboratorium des Instituts für Anorganische Chemie, Göttingen.

Compound 1 was prepared according to the published method.^[7]

Synthesis of $[{3,5-N-tBu_2pz-N'-CH=C(SiMe_3)}]$ AlMe₂ (2): MeLi (4 mL, 4 mmol) in Et₂O (20 mL) was added slowly at $-78 \text{ }^{\circ}\text{C}$ to a suspension of 1 (0.74 g, 2.0 mmol) in Et₂O (40 mL). The solution was allowed to warm to room temperature and then stirred for 15 h. The solvent was removed and the resulting residue sublimed at 100 °C under high vacuum (0.01 mbar) to give a white powder mainly consisting of 2. Pure 2 was obtained by recrystallization from *n*-hexane at -26 °C (ca. 0.46 g, 70%). Crystals suitable for Xray diffraction analysis were obtained from *n*-hexane at 4 °C. M.p. 157 °C. ¹H NMR (200.130 MHz, C_6D_6): $\delta = -0.15$ (s, 6 H, $A1-CH_3$, 0.37 [s, 9 H, $Si(CH_3)_3$], 1.00 [s, 9 H, $C(3)-C(CH_3)_3$], 1.28 [s, 9 H, $C(1)-C(CH_3)_3$], 5.86 [s, 1 H, C(2)H], 7.63 [s, 1 H, = C(4)H]. ¹³C NMR (125.758 MHz, C_6D_6): $\delta = -7.1$ [br, Al-C(5) = 1, $-0.9 \text{ (Al} - CH_3), -0.01 \text{ [Si} - C(16)], 29.7 \text{ [}C(12,13,14)\text{]}, 30.6 \text{ [}C(11)\text{]},$ 31.4 [C(32,33,34)], 32.6 [C(31)], 103.2 [C(4)], 132.7 [C(2)], 150.7 [C(1)], 161.9 [C(3)]. MS (EI): m/z (%) = 334 (10) $[M^+]$, 319 (100) $[M^+ - Me]$. $C_{18}H_{35}AlN_2Si$ (334.55): calcd. C 64.62, H 10.54, N 8.37; found C 64.3, H 10.1, N 8.2.

Synthesis of $[{3,5-N-tBu_2pz-N'-CH=C(SiMe_3)}AlH_2]$ (3): A solution of 1 (0.74 g, 2.0 mmol) in THF (20 mL) was added slowly at -30 °C to a suspension of LiAlH₄ (0.16 g, 4.2 mmol) in THF (30 mL). The suspension was stirred for an additional 15 h at room temperature and then filtered through celite. The solution was concentrated to ca. 8 mL and 3·(THF)2 crystallized as a white crystalline solid at -26 °C. After the removal of THF molecules of 3·(THF)₂ at 50 °C under high vacuum for 15 h, 3 was obtained as a white powder (0.35 g, 57%). M.p.: 134 °C. ¹H NMR (200.130 MHz, $[D_8]THF$): $\delta = 0.14$ [s, 9 H, $Si-(CH_3)_3$], 1.410 [s, 9 H, $C(3)-C(CH_3)_3$, 1.415 [s, 9 H, $C(1)-C(CH_3)_3$], 3.80 (br, s, 2 H, A1-H), 6.21 [s, 1 H, C(2)H], 7.60 [s, 1 H, =C(4)H]. ¹³C NMR (125.758 MHz, $[D_8]$ THF): $\delta = -0.01$ [Si-C(16)], 29.9 [C(12,13,14)], 30.2 [C(11)], 32.4 [C(32,33,34)], 32.8 [C(31)], 104.2[C(4)], 135.1 [C(2)], 143.6 (br, Al-C=), 152.0 [C(1)], 162.3 [C(3)]. 27 A1 NMR (65.170 MHz, [D₈]THF): $\delta = 106.4$. 29 Si NMR (99.362 MHz, $[D_8]$ THF): $\delta = -6.2$. MS (EI): m/z (%) = 306 (100) $[M^+]$, 291 (70) $[M^+ - Me]$. IR (KBr, nujol mull): $v_{Al-H} = 1780$ (ms), 1812 (ms) cm⁻¹. C₁₆H₃₁AlN₂Si (306.50): calcd. C 62.70, H 10.19, N 9.14; found C 61.8, H 9.9, N 9.0

Synthesis of [{3,5-N- tBu_2pz -N'-CH=C(SiMe_3)}AlI_2] (4). Method 1: A solution of I₂ (1.00 g, 4.0 mmol) in toluene (40 mL) was added slowly at room temperature to a solution of 2 (0.66 g, 2.0 mmol) in toluene (20 mL). The solution was stirred for 15 h at room temperature and then refluxed for 12 h. The solution was filtered through celite and then concentrated to ca. 10 mL to give small colorless crystals at -26 °C (0.82 g, 73%).

Method 2: A solution of I_2 (1.00 g, 4.0 mmol) in toluene (40 mL) was added slowly to a suspension of 3 (0.61 g, 2.0 mmol) in toluene (20 mL) and then stirred for 12 h at room temperature until the brown color disappeared. The solution was filtered through celite and the filtrate was concentrated to about 10 mL. Compound 4 crystallized as a pale solid at -26 °C (0.49 g, 43%). M.p.: 192 °C.

¹H NMR (200.130 MHz, C₆D₆): δ = 0.42 [s, 9 H, Si(CH₃)₃], 0.82 [s, 9 H, C(3)-C(CH₃)₃], 1.43 [s, 9 H, C(1)-C(CH₃)₃], 5.81 [s, 1 H, C(2)H], 7.36 [s, 1 H, =C(4)H]. ¹³C NMR (125.758 MHz, C₆D₆): δ = 0.09 [Si-C(16)], 29.4 [C(12,13,14)], 31.39 [C(11)], 31.44 [C(32,33,34)], 33.3 [C(31)], 105.0 [C(4)], ca. 128 (br, Al-C=, overlapped by C₆D₆ signals), 134.7 [C(2)], 153.5 [C(1)], 165.3 [C(3)]. ²⁹Si NMR (99.362 MHz, C₆D₆): δ = -6.4. MS (EI): m/z (%) = 558 (4) [M⁺], 543 (15) [M⁺ - Me], 431 (100) [M⁺ - I]. C₁₆H₂₉Al-I₂N₂Si (558.29): calcd. C 34.42, H 5.24, N 5.02; found C 33.8, H 5.1, N 5.2.

Synthesis of $[{3,5-N-tBu_2pz-N'-CH=C(SiMe_3)}H]$ (5): 0.036 mL of a solution of water (2.0 mmol) in THF (10 mL) was added slowly to a solution of compound 1 (0.75 g, 2.0 mmol) in THF (30 mL) at room temperature. After stirring for 15 h at room temperature, the solvent was removed in vacuo. The resulting residue was sublimed at 90 °C under high vacuum (0.01 mbar) to afford the colorless solid 5 (0.39 g, 70%). M.p.: 173 °C. ¹H NMR $(200.130 \text{ MHz}, C_6D_6)$: $\delta = 0.12 \text{ [s, 9 H, Si}(CH_3)_3], 1.17 \text{ [s, 9 H,}$ $C(3)-C(CH_3)_3$, 1.44 [s, 9 H, $C(1)-C(CH_3)_3$], 6.01 [s, 1 H, C(2)H], 6.77 [d, ${}^{2}J_{H,H} = 16.3 \text{ Hz}$, 1 H, C(5)H], 7.48 [d, ${}^{2}J_{H,H} = 16.3 \text{ Hz}$, 1 H, =C(4)H]. ¹³C NMR (125.758 MHz, C_6D_6): $\delta = -1.3$ [Si-C(16)], 30.0 [C(12,13,14)], 30.3 [C(11)], 30.9 [C(32,33,34)], 33.1 [C(31)], 101.2 [C(4)], 111.2 [C(5)], 135.7 [C(2)], 150.8 [C(1)], 161.4 [C(3)]. MS (EI): m/z (%) = 278 (20) [M⁺], 263 (100) [M⁺ - Me]. C₁₆H₃₀N₂Si (278.51): calcd. C 69.00, H 10.86, N 10.06; found C 70.4, H 11.0, N 10.3.

X-ray Crystallography: Crystals of 2 (M = 334.55) were grown from a concentrated *n*-hexane solution cooled to 4 °C. 2 crystallized in the monoclinic crystal system with space group C2/c. Relevant details and data are summarized in Table 1. The crystals were mounted on a glass fiber in a rapidly cooled perfluoropolyether.^[16] Diffraction data were collected on a Stoe-Siemens four-circle diffractometer coupled to a Siemens CCD area detector at 200(2) K, with graphite-monochromated Mo- K_a radiation ($\lambda = 0.71073 \text{ Å}$). The structure was solved by direct methods using SHELXS-96^[17] and refined against F^2 on all data by full-matrix least-squares with SHELXS-97.^[18] All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included in the model at their geometrically calculated positions and refined using a riding model. CCDC-170473 (2) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: (internat.) +44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

The financial support of the Deutsche Forschungsgemeinschaft and Göttinger Akademie der Wissenschaften is gratefully acknowledged.

- [1] J. J. Eisch, in *Comprehensive Organometallic Chemistry* 2nd ed. (Ed.: C. E. Housecroft), Pergamon, Oxford, **1995**, vol. 1, p. 431–502.
- ^[2] M. Witt, H. W. Roesky, Curr. Sci. 2000, 78, 410-430.
- [3] [3a] G. Linti, H. Schnöckel, Coord. Chem. Rev. 2000, 206–207, 285–319, references therein. [3b] W. Uhl, Rev. Inorg. Chem. 1998, 18, 239–282, references therein. [3c] S. Schulz, H. W. Roesky, H.-J. Koch, G. M. Sheldrick, D. Stalke, A. Kuhn, Angew. Chem. Int. Ed. Engl. 1993, 32, 1729–1731. [3d] C. Cui, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, H. Hao, F. Cimpoesu, Angew. Chem. Int. Ed. 2000, 39, 4531–4533.
- [4] C. E. Radzewich, I. A. Guzei, R. F. Jordan, J. Am. Chem. Soc. 1999, 121, 8673–8674.
- [5] [5a] W. Zheng, H. W. Roesky, M. Noltemeyer, Organometallics 2001, 20, 1033-1035. [5b] W. Zheng, N. C. Mösch-Zanetti, H. W. Roesky, M. Noltemeyer, M. Hewitt, H.-G. Schmidt, T. R. Schneider, Angew. Chem. Int. Ed. 2000, 39, 4276-4278. [5e] W. Zheng, N. C. Mösch-Zanetti, H. W. Roesky, M. Hewitt, F. Cimpoesu, T. R. Schneider, A. Stasch, J. Prust, Angew. Chem. Int. Ed. 2000, 39, 3099-3101.
- [6] R. J. Wehmschulte, P. P. Power, Polyhedron 2000, 19, 1649–1661 and references therein.
- [7] W. Zheng, N. C. Mösch-Zanetti, T. Blunck, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt, *Organometallics* 2001, 20, 3299–3303.
- ^[8] Attempts to prepare compound **2** from $[(\eta^1, \eta^1-3, 5-tBu_2pz)(\mu-AlMe_2)]_2$ $[^{11]}$ and $HC \equiv CSiMe_3$ were not successful, the reaction led to the formation of $[\{3,5-N-tBu_2pz-N'-CH=C(SiMe_3)\}Al(C \equiv CSiMe_3)_2].$ $[^{5c]}$
- [9] C. Krüger, P. J. Roberts, Y.-H. Tsay, J. B. Koster, J. Organomet. Chem. 1974, 78, 69-74.
- [10] H. Schnöckel, M. Leimkühler, R. Lotz, R. Mattes, Angew. Chem. Int. Ed. Engl. 1986, 25, 921–922.
- [11] W. Zheng, H. Hohmeister, N. C. Mösch-Zanetti, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt, *Inorg. Chem.* 2001, 40, 2363–2367.
- [12] J. F. Janik, E. N. Duesler, R. T. Paine, J. Organomet. Chem. 1997, 539, 19-25 and references therein.
- ^[13] The formation of compound **4** was not observed when a solution of $[(\eta^1,\eta^1-3,5-tBu_2pz)(\mu-AlI_2)]_2$ [11] and HC=CSiMe₃ in toluene was refluxed for 24 h.
- [14] Ch. Elschenbroich, A. Salzer, Organometallics: A Concise Introduction, 2nd revised edition, VCH, Weinheim, 1992, p. 75–86.
- [15] C. Fernández-Castaño, C. Foces-Foces, N. Jagerovic, J. Elguero, J. Mol. Struct. 1995, 355, 265-271.
- [16] T. Kottke, D. Stalke, J. Appl. Crystallogr. 1993, 26, 615-619.
- [17] G. M. Sheldrick, SHELXS-90, Program for Structure Solution, *Acta Crystallogr., Sect. A* **1990**, *46*, 467–473.
- ^[18] G. M. Sheldrick, SHELXL-97, *Program for Crystal Structure Refinement*, University of Göttingen, Germany, **1997**.

Received October 10, 2001 [I01402]